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An adaptive lattice Boltzmann model for compressible flows is presented. The
particle-velocity set is so large that the mean flow may have a high velocity. The
support set of the equilibrium-distribution function is quite small and varies with
the mean velocity and internal energy. The adaptive nature of this support set permits
the mean flows to have high Mach number, meanwhile, it makes the model simple
and practicable. The model is suitable for perfect gases with an arbitrary specific heat
ratio. Navier–Stokes equations are derived by the Chapman–Enskog method from
the BGK Boltzmann equation. When the viscous terms and the diffusion terms are
considered as a discretion error this system becomes an inviscid Euler system. Several
simulations of flows with strong shocks, including the forward-facing step test, double
Mach reflection test, and a strong shock of Mach number 5.09 diffracting around a
corner, were carried out on hexagonal lattices, showing the model’s capability of
simulating the propagation of strong shock waves.c© 2000 Academic Press
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I. INTRODUCTION

In the past years, the lattice Boltzmann (LB) method has attracted much attention
as a novel alternative to traditional methods for numerically solving the Navier–Stokes
(N-S) equation. The LB method has demonstrated its ability to simulate single compo-
nent hydrodynamics, multiphase and multi-component fluids, magneto-hydrodynamics,
reaction-diffusion systems, flows through porous media, and other complex systems (see
a review paper [1]). Meanwhile, the LB method has demonstrated a significant poten-
tial and broad applicability with numerous computational advantages, such as the parallel
of algorithm, the simplicity of programming, and the ability to incorporate microscopic
interactions. Although promising, the current lattice Boltzmann method still has a few
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undesirable shortcomings that limit its general application as a practical computational
fluid dynamics tool. One of these shortcomings, which is specifically addressed in this
paper, is the low Mach number constraint.

Historically, the LB method originated from a Boolean model known aslattice gas
automata (LGA) [2, 3]. The standard LGA models impose, for the sake of computational
efficiency, a Boolean constraint which restricts the number of particles with a given veloc-
ity at a site to be zero or one. The local equilibrium of the mean population of particles is
described by the Fermi–Dirac statistics. As a result, LGA models suffer from the statistical
noise and the non-Galilean invariance. These difficulties have led to the development of
LB models [4–6]. In LB method real numbers represent the local ensemble-averaged parti-
cle distribution functions. The simple Bhatnagar–Gross–Krook (BGK) collision operator is
applied [4, 5]. Space and time are discrete as they are in the LGA method. The particle ve-
locities belong to a finite set. Consequently the macroscopic velocity is limited. As a result,
the general LB method suffers from the constraint of small Mach number. The gas-kinetic
theory [7, 8] and the discrete-velocity model [9] successfully simulated the compressible
Euler equation. The finite volume method was employed to solve the Boltzmann equations.
The discontinuities were well captured. However, due to the restraint mentioned above,
the standard LB method has great difficulty to simulate compressible Euler flows at high
Mach number. Many efforts have been made to overcome this difficulty in the past years.
Alexanderet al. [10] attempted to decrease the sound speed to augment the Mach number.
Hu et al. [11] proposed a compressible LB model for Euler system and simulated the Sod
shock-tube problem. Recently, we proposed a locally adaptive LB model [12]. The particle
velocity set is chosen so large that the fluid velocity is no longer limited by it. Consequently,
the model is suitable for a wide range of Mach number. We have successfully simulated
the Sod shock-tube problem and two-dimensional shock reflection. This model has been
extended to a thermal adaptive LB model [13, 14].

In the present paper, we formulate a generalized adaptive LB model in which both the
particle velocity phase and the particle energy phase are continuous spaces. Then we simu-
late several standard flow problems to demonstrate the capability of this model for capturing
strong shock waves. This paper is organized as follow. The first part of Section II describes
the generalized adaptive LB model and derives the general macroscopic conservation equa-
tions from the Boltzmann equations by the Chapman–Enskog method. In the second part
an equilibrium distribution function is determined such that the general macroscopic con-
servation equations become the N-S equations. The third part discusses the stability of the
model. Section III is about the numerical results. Finally, some concluding remarks will be
presented.

II. SEMI-DISCRETE ADAPTIVE LB MODEL

A. Basic equations. Let r be the particle “migrating velocity,” transporting a particle
from a node to its neighbor node at a distancer1t during the discrete time1t . Let Sbe a
set of migrating velocities,S={r}. Because the nodes of the lattice are discrete this set is
discrete. Suppose that the particle transports the massm, momentummξ, and energymζ to
the neighbor node at a distancer1t , whereξ andζ are called particle “phase velocity” and
“phase energy,” andm is the particle mass.ξ ∈ D1,D1 is a bounded domain in<3 (or in<2

for 2-D models) andr ∈D1; ζ ∈D0,D0 is a bounded domain in<. DefineD=D1×D0. In
other words, the migrating velocityr is used to calculate the distance that the particle moves;
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the phase velocityξ and phase energyζ are used to calculate the momentum and energy
transported by the particle. Unlike the migrating velocityr which is discrete,ξ andζ can
vary continuously. Therefore we call this model a “semi-discrete model.” In the standard
LB model, space, time, and the particle velocity are all discrete; as a result,ξ andζ must
be discrete and take the values ofr and1

2r2, respectively. The objective of introducing such
a semi-discrete velocity LB model is to increase accuracy of the model [12].

Let x be an arbitrary node of a lattice;f (x, r , ξ, ζ, t) is the density distribution function
for the particle with the phase velocityξ and migrating velocityr , moving tox+ r1t
during1t , and transporting the momentummξ and energymζ . The conserved total mass,
momentum, and energy are defined as

ρ ≡
∑
r∈S

∫
D

m f(x, r , ξ, ζ, t) dξ dζ (1)

ρv ≡
∑
r∈S

∫
D

mξ f (x, r , ξ, ζ, t) dξ dζ (2)

ρE ≡
∑
r∈S

∫
D

mζ f (x, r , ξ, ζ, t) dξ dζ, (3)

wheredξ= dξ1 dξ2 dξ3.
It is pointed out that the vectors inS need not to be different one from each other; they

are, however, considered as different elements and the sum is taken over all the elements in
S. Define

η ≡ [m,mξ,mζ ]T (4)

Y ≡ [ρ, ρv, ρE]T. (5)

The formulae (1), (2), (3) can be written in the compact form,

Y =
∑
r∈S

∫
D
η f (x, r , ξ, ζ, t) dξ dζ. (6)

In LB models, the distribution functionf (x, r , ξ, ζ, t) satisfies the BGK Boltzmann
equation,

f (x+ r1t, r , ξ, ζ, t +1t)− f (x, r , ξ, ζ, t) = Ä(x, r , ξ, ζ, t)
(7)

r ∈ S, ξ ∈ D1, ζ ∈ D0,

where

Ä(x, r , ξ, ζ, t) = −1

τ
[ f (x, r , ξ, ζ, t)− f eq(x, r , ξ, ζ, t)] (8)

and f eq(x, r , ξ, ζ, t) is the equilibrium distribution depending on the total mass, momen-
tum, and energy. The discrete migrating velocity set{r} is large; moreover,ξ andζ can
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vary continuously. Therefore, the Boltzmann Eq. (7), in general, is hard to solve. In fact,
Eq. (7) is only used for theoretical analysis. The technique for numerical simulation will be
discussed in Section III.

In the following, we utilize the Chapman–Enskog expansion of the solution of Eq. (7) to
derive the macroscopic conservation equations [16–18]. We choose1t = εT , whereT is a
reference time scale andε a typical small parameter. We are then looking for a solution of
Eq. (7) as an asymptotic expansion of the form

f =
∞∑

n=0

εn f (n) (9)

∂Y
∂t
=
∞∑

n=0

εnF(n), (10)

where f (n) andF(n) depend only onY and its successive gradients.f (0)= f eq is completely
determined by the macroscopic variablesρ, ρv, andρE and satisfies

Y =
∑
r∈S

∫
D
η f eq(x, r , ξ, ζ, t) dξ dζ. (11)

Considering the relations (6), (11), (9), and (8) we have

∑
r∈S

∫
D
η f (n) dξ dζ = 0, ∀n ≥ 1 (12)

∑
r∈S

∫
D
ηÄ dξ dζ = 0. (13)

η is called “collision invariant.”
We Taylor expand the left-hand side of Eq. (7). Then, by identifying the first-order terms

of ε, we can determinef (1), and considering (12) and (13), we obtainF(0) andF(1),

f (1) = −τT

{
∇ f eq · r + ∂ f eq

∂Y
· F(0)

}
F(0) = −div

∑
r∈S

∫
D

r f eqη dξ dζ

F(1) = −div
∑
r∈S

∫
D

{
f (1)r + T

2

[
div( f eqrr )+ ∂ f eq

∂Y
· F(0)r

]}
η dξ dζ.

The operator div and∇ take effect on variablex. The variablesr ,ξ, andζ are independent
of x. Therefore, they can be treated as constant for div and∇. Up to order 1, Eq. (10) is
written as

∂Y
∂t
= −div

∑
r∈S

∫
D

f eqrη dξ dζ

−εT
(

1

2
− τ
)

div

[
div
∑
r∈S

∫
D

f eqrr η dξ dζ +
∑
r∈S

∫
D

∂ f eq

∂Y
· F(0)rη dξ dζ

]
. (14)
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FIG. 1. Illustration of particle migrating velocities (for1t = 1).

This is the macroscopic conservation equation. It depends on the distribution off eq. If the
equilibrium distribution is properly determined it may become the N-S equations.

B. Equilibrium distributions. Let l be the unit length of a uniform lattice. Let’s consider
a vector set{c′j ν; j = 1, . . . ,bν} connecting a node to its equal distance neighbor nodes,
wherebν is the number of vector directions.c′ν , the module ofc′j ν , is an integer timesl/1t .
Suppose the vector set{c′j ν; j = 1, . . . ,bν} is symmetric up to order 2; i.e,

∑bν
j=1 c′j ν = 0and∑bν

j=1 c′j νc
′
j ν = (c′ 2ν /D)I , whereI is second order unit tensor andD is the dimension of space

[3]. For the hexagonal lattice we choosebν = 6, ν= 1 and 2. In the standard LB method,
the constant vectorsc′j ν are the particle velocities. We superimpose the fluid velocityv,
which is approximated byvk (k= 1, 2, 3) (see Fig. 1), on the symmetric velocityc′j ν . Let x
be an arbitrary node;v is the fluid velocity at this node;v1, v2, andv3 are the vectors from
the nodex to the apexes of the triangle containing the velocity vectorv. Consider particle
migrating velocitiesc j νk ∈ S, phase velocities̄c j ν ∈D1, fluctuating velocitiesv′k (k= 1, 2,
3), and phase energyζ j ν ∈D0 defined by

c j νk = vk + c′j ν (15)

c̄ j ν = v+ c′j ν (16)

vk = v+ v′k (17)

ζ j ν = 1

2
c̄2

j ν +8 =
1

2

(
v2+ 2c j ν · v+ c′ 2ν

)+8. (18)

ζ j ν consists of kinetic energym1
2 c̄2

j ν and other form energym8 that was introduced
in order to obtain an arbitrary specific heat ratioγ . Figure 1 shows the particle migrating
velocities for1t = 1. If 1t is not equal to 1, all the velocities in this figure should be
multiplied by1t . For high speed flow the fluctuating velocitiesv′k are small.

We are now determining the equilibrium distributionf eq(x, r , ξ, ζ, t), r ∈ S, ξ ∈D1,

ζ ∈D0. Suppose that the migrating velocity setScontains allc j νk and thatD (=D1×D0)

is so large that̄c j ν ∈D1 andζ j ν ∈D0 for all c̄ j ν andζ j ν all the time. We hope the model
is as simple as possible under the condition that the fluid properties can be completely
satisfied. We concentrate the particles atr = c j νk, ξ= c̄ j ν , andζ = ζ j ν .
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We define the equilibrium distribution as

f eq(x, r , ξ, ζ, t) ≡
{

dνkδ(ξ − c̄ j ν)δ(ζ − ζ j ν) for r = c j νk

0 for otherr ∈ S,
(19)

whereδ(ξ) is theδ function.δ(ξ)= 0 for ξ 6= 0; ∫ g(ξ)δ(ξ) dξ= g(0). δ(ζ )= 0 for ζ 6= 0;∫
g(ζ ) δ(ζ )dζ = g(0). dνk is a function of macroscopic variables and will be determined

later.
It is pointed out thatf eq(x, r , ξ, ζ, t) is defined for all(r , ξ, ζ )∈ S× D1×D0. How-

ever, f eq(x, r , ξ, ζ, t) is non-zero only for(r , ξ, ζ )∈ {c j νk}× {c̄ j ν}× {ζ j ν} that is called the
support set off eq(x, r , ξ, ζ, t). Define

f eq
j νk(x, t) ≡

∫
D

f eq(x, c j νk, ξ, ζ, t) dξ dζ = dνk. (20)

Substitutingf eq defined by Eq. (19) into Eq. (14), one obtains

∂Y
∂t
= −div

∑
k,ν, j

{
dνkc j νkη

′
j ν + εT

(
1

2
− τ
)[

div(dνkc j νkc j νkη
′
j ν)

+F(0) · ∂
∂Y
(dνkc j νkη

′
j ν)

]}
, (21)

where

η′j ν = {m,mc̄ j ν,mζ j ν}T =
{

m,m(v+ c′j ν),m
[

1

2
(v+ c′j ν)

2+8
]}T

. (22)

In the same way, Eq. (11) becomes

Y =
∑
r∈S

∫
D
η f eq(x, r , ξ, ζ, t) dξ dζ =

∑
k,ν, j

dνkη
′
j ν, (23)

i.e.,

ρ =
∑
k,ν

mbνdνk =
3∑

k=1

ρk (24)

ρE =
∑
k,ν, j

mdνk

(
1

2
c̄2

j ν +8
)

=
∑
k,ν, j

1

2
mdνk

(
v2+ 2v · c′j ν + c′ 2ν

)+ ρ8
= 1

2
ρv2+

∑
k,ν

1

2
mbνdνkc′ 2ν + ρ8, (25)

whereρk=
∑

ν mbνdνk. The second component of (23) is automatically satisfied as long
as thedνk satisfy (24).

In order to increase the accuracy we assume that theρk satisfy the equation

ρv =
3∑

k=1

ρkvk. (26)
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For givenρ andρv it can be proved that Eqs. (24) and (26) have unique non-negative
solution forρk (see Fig. 1). In fact, when the head of vectorv is inside of the triangleABC,
ρk is positive fork= 1, 2, 3. When it approaches the segmentBC, ρ1 tends to 0. When it
moves still further into the triangleBC D, the triangleABC in consideration is replaced
by BC D, andρ1, that is for pointD now, becomes again positive. In brief, theρk’s change
continuously when the head of vectorv moves from a triangle into another one. If the head
of vectorv is on A we haveρ1= ρ, ρ2= ρ3= 0.

Equations (24) and (26) permit us to write

∑
k

ρkv′k = 0. (27)

Thanks to Eq. (27), we will see that the first order ofv′k in the conservation equations will
disappear. We introduce the density portionαk= ρk/ρ and supposedνk has the form

dνk = αkdν, (28)

wheredν =
∑

k dνk will be determined by the density and pressure (or internal energy).
The perfect gas with specific heat ratioγ satisfiesp= (γ − 1)ρe, wheree= E− 1

2v
2 is

the internal energy. The pressurep has the form

p =
∑
ν

mbνdν
1

D
c′ 2ν , (29)

whereD is the space dimension.
In the case where thec′ν have two levels (ν= 1, 2) one can determined1, d2, and8 by

Eqs. (24), (25), and (29),

d1 = ρ c′ 22 − D(γ − 1)e

b1m
(
c′ 22 − c′ 21

)
d2 = ρ D(γ − 1)e− c′ 21

b2m
(
c′ 22 − c′ 21

)
8 =

[
1− D

2
(γ − 1)

]
e.

In order to ensure the non-negativity ofd1 and d2, c′1 and c′2 need to satisfyc′ 21 ≤
D(γ −1)e≤ c′ 22 . However,c′1 andc′2 are not completely determined. In practice, we choose
c′1 andc′2 as close as possible from each other.

Now, the equilibrium distribution is completely determined. When the mean velocity
is zero, we haveρ1= ρ, ρ2= ρ3= 0, therefore,dνk= 0 for k= 2 and 3. In a standard
LB model of two particle velocity levels [15], the equilibrium distribution can be written
as

f eq
j ν = dν

{
1+ D

c2
ν

c j ν · v+ D(D + 2)

2c4
ν

[
c j νc j ν : vv− c2

ν

D
v2

]}
.
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When the mean velocity is zero, this equation becomes

f eq
j ν = dν

which is the same as Eq. (20). This means that the present model agrees with the standard
LB model when the mean velocity is zero.

Considering the relations (15), (16), (17), (26), and (27), we derive the continuity, mo-
mentum, and energy equations from Eq. (21),

∂ρ

∂t
+ div(ρv) = div(B0) (30)

∂ρv
∂t
+ div(ρvv)+∇ p = div{µ[∇v+ (∇v)T − (γ − 1) div vI ] + B1} (31)

∂ρE

∂t
+ div(pv+ ρEv) = div{µv · [∇v+ (∇v)T − (γ − 1) div vI ]}

+ div{∇A+∇(µ8)− γe∇µ+ B2}, (32)

where

µ = εT
(
τ − 1

2

)∑
ν

mbνdν
1

D
c′ 2ν

B0 = εT
(
τ − 1

2

)
div
∑
k,ν

mbνdνkv ′kv ′k

B1 = εT
(
τ − 1

2

)
div
∑
k,ν

mbνdνkvv ′kv′k (33)

B2 = εT
(
τ − 1

2

)
div
∑
k,ν

mbνdνk

[
1

2

(
v2+ c′ 2ν

)+8]v ′kv ′k

A = εT
(
τ − 1

2

)∑
ν

mbνdν
1

2D
c′ 4ν .

εT is the time step;µ is the viscosity. In Eq. (32) the first term and the second term of the
right-hand side correspond respectively to the dissipation and the heat conduction.B0, B1,
andB2 can be regarded as discretion error. Then, Eqs. (30), (31), and (32) become Navier–
Stokes equations. The influences of the fluctuating velocitiesv′k are included in termsB0,
B1, andB2 which are of second order ofv ′k. Figure 1 shows that|v ′k| ≤ l/1t , wherel is the
unit length of the lattice and1t is the unit time. From Eqs. (24), (26), and (28) we know
that when one of the three|v′k| takes the maximuml/1t for example,|v ′k′ | = l/1t , we have
dνk′ = 0. Consequently,B0, B1, andB2 are still small.

Whenv is small,|v|< 1
2l/1t , for example, one ofvk is a zero vector (see Fig. 1). Sup-

posingv1= 0 without losing generality, we havev ′1=−v. ρ2 andρ3, solved from Eq. (26),
can be written asρk= ak · v, k= 2, 3, whereak are constant vectors determined byv2 and
v3. In this case,B0 andB2 are of orderv andB1 is of ordervv.
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In Ref. [14],B0, B1, andB2 were removed from Eqs. (30), (31), and (32) by modifying
the collision invariantη, while the computation increased about 1/3.

C. Asymptotic properties.In the discrete kinetic theory of gases [18] and lattice gas
[3], there exists a local H theorem which ensures the stability or asymptotic stability of the
models [19–21]. In the LB method we do not have the H theorem. However, due to the
simple collision operator of BKG type, we can still analyze the stability of a LB model.

The Boltzmann equation (7) can be written as

f (x+ r1t, r , ξ, ζ, t +1t) = fc(x, r , ξ, ζ, t) (34)

fc(x, r , ξ, ζ, t) = f (x, r , ξ, ζ, t)+Ä(x, r , ξ, ζ, t), (35)

whereÄ defined by Eq. (8) is a function off and f eq, the equilibrium distribution defined
above. The evolution off (x, r , ξ, ζ, t) with time consists of two steps: local collision (35)
and displacement (34). Considering Eq. (13), we have

∑
r∈S

∫
D
η fc(x, r , ξ, ζ, t) dξ dζ =

∑
r∈S

∫
D
η f (x, r , ξ, ζ, t) dξ dζ. (36)

The collision step changes the distribution functionf by the amount proportional to the
departure off from the equilibrium distributionf eq under the condition (36). The tendency
to the equilibrium distribution can be expected. Especially whenτ = 1 the collision operator
(35) becomesfc(x, r , ξ, ζ, t)= f eq(x, r , ξ, ζ, t).

We can make a rigorous analysis in homogeneous cases. Supposef (x, r , ξ, ζ, t) is homo-
geneous at initial timet = 0, i.e., f (x, r , ξ, ζ,0) is independent ofx; the lattice is periodic.
From the Boltzmann equation (7),f (x, r , ξ, ζ, t) keeps being homogeneous all the time,
therefore, the macroscopic variables defined by Eqs. (1), (2), and (3) are always ho-
mogeneous and constant. Being completely determined by the macroscopic variables,
f eq(x, r , ξ, ζ, t) is also always homogeneous and constant, i.e.,f eq(x, r , ξ, ζ, t)=
f eq(x, r , ξ, ζ,0). Equation (7) can be written as

fn+1(r , ξ, ζ ) = 1

τ
f eq
0 (r , ξ, ζ )+

(
1− 1

τ

)
fn(r , ξ, ζ ), ∀r ∈ S, ξ ∈ D1, ζ ∈ D0, (37)

where fn(r , ξ, ζ )= f (x, r , ξ, ζ,n1t), f eq
0 (r , ξ, ζ ) is the equilibrium distribution corre-

sponding to the macroscopic variables at initial time. One can see that the equilibrium
distribution f eq

0 (r , ξ, ζ ) is a fix point of Eq. (37). By recurrence of Eq. (37),fn+1(r , ξ, ζ )
can be calculated

fn+1(r , ξ, ζ ) = 1

τ

n∑
i=0

(
1− 1

τ

)i

f eq
0 (r , ξ, ζ )+

(
1− 1

τ

)n+1

f0(r , ξ, ζ )

=
[
1−

(
1

τ

)n+1]
f eq
0 (r , ξ, ζ )+

(
1− 1

τ

)n+1

f0(r , ξ, ζ ) (38)

from which we have

lim
n→∞ fn+1(r , ξ, ζ ) = f eq

0 (r , ξ, ζ ), if τ > 1/2.
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At initial time f0(r , ξ, ζ )may be different from the equilibrium distributionf eq
0 (r , ξ, ζ )

but fn(r , ξ, ζ ) tends to the equilibrium distribution ifτ >1/2. Therefore, in the homoge-
neous case, the equilibrium distributionf eq

0 (r , ξ, ζ ) is an asymptotically stable fix point if
τ >1/2.

III. NUMERICAL SIMULATIONS

Because the discrete migrating velocity setScontains allc j νk that vary from node to node
and from time to time,Sis quite large. Moreover,ξ ∈ D1 andζ ∈D0 can vary continuously;
therefore the Boltzmann equation (7) defined for allr ∈ S, ξ ∈D1, andζ ∈ D0 is generally
hard to solve. Fortunately, whenτ = 1 it is simplified

f (x+ r1t, r , ξ, ζ, t +1t) = f eq(x, r , ξ, ζ, t). (39)

Since f eq(x, r , ξ, ζ, t) depends only on fluid density, velocity, and internal energy, the
particle distributionf at t +1t is also determined by them, independent of the particle dis-
tribution f at timet . In fact, during the numerical simulations, what we care about are the
mass, momentum, and energy transported by the particles, and there is no need to store the
particle distributionf . In this way, the need of computer memory and computation time
is considerably reduced. Due to the fact thatf eq(x, r , ξ, ζ, t)= 0 for r 6= c j νk, the mass,
momentum, and energy transported by a particle fromx to x+ c j νk1t are the components
of the vector ∫

D
η f eq(x, c j νk, ξ, ζ, t) dξ dζ = η′j νdνk. (40)

In the simulations we need only to calculateη′j νdνk.
If we regard the viscous terms and diffusion terms of the right-hand sides of Eqs. (31)

and (32) as the discretion error, Eqs. (30), (31), and (32) become inviscid Euler system. In
fact, the viscosity and diffusivity are of order(τ − 1

2)l
2/1t , wherel is the unit length of

the lattice and1t , is the unit time.
Although the theory in the previous section is valid forτ >1/2, τ has to be 1 for practical

simulation in this model.τ appears only in the viscous terms and diffusion terms. Indeed,
when solving N-S equations by this model, we lose the freedom of choosing the viscosity
and diffusivity byτ , yet we can choose them by other parameters [14]. When we solve Euler
equations, the viscous terms and diffusion terms are considered as the discretion error, in
this case, the conditionτ = 1 does not provoke inconveniences.

In Ref. [12] we simulated the Sod shock-tube problem and two-dimensional shock reflec-
tion. The numerical results agree well with the exact solutions. In the following, we simulate
three more complex flows with strong shocks under the conditionτ = 1 andγ = 1.4: the
forward-facing step, double Mach reflection, and Mach 5.09 diffraction shock tests.

EXAMPLE 1. The forward-facing step test is carried out on a 360× 140 hexagonal lattice.
The computational domain is 3 : 1. Because of the high speed of the flow, in order to ensure
that the constant condition is properly set on the left boundary of the computational domain,
at the left of the entrance we add several additional rows of nodes upstream. The constant
condition(ρ, p, u, v)= (1.0, 0.25/1.4, 1.5, 0.) is imposed on theses additional nodes. The
corresponding Mach number is 3.0. The mirror reflection boundary condition (i.e., slip wall
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FIG. 2. Density distribution for Mach 3 forward-facing step test on lattice 360× 140.

condition) is imposed on the solid walls. The numerical results are presented in Figs. 2–4
for density, pressure, and entropy contours att = 1000th iteration. The shapes and positions
of the shocks agree with the those of Refs. [8, 23].

EXAMPLE 2. The next numerical example is a double Mach reflection of a strong shock
test [22] calculated on 360× 140 hexagonal lattice. The computational domain is 3 : 1. The
problem is set up by driving a shock down a tube which contains a wedge as shown in
Fig. 5. The fluid in front of the shock has zero velocity, and the shock Mach number is equal
to 10. The solution to this problem is self-similar, with a function of(x, y, t) only in the
combination(x/t, y/t). The density, pressure, and entropy contours att = 200th iteration
are shown in Figs. 6–8. Complex features, such as oblique shocks and triple points, are well
captured, in good agreement with results obtained by upwind method [22].

EXAMPLE 3. The last numerical example is a strong shock of Mach number 5.09
diffracting around a corner. The computation domain is 1× 1, divided into 140× 160 cells.
Figures 9–11 show the density, pressure, and entropy contours att = 140th iteration. Here
again, the shapes and positions of the shocks agree with those of Xu [8]. However, the
shocks are not as fine as Xu’s. The reason is that our solution is the solution of N-S
equations (30), (31), and (32).

Since we store only the mass, momentum, and energy, not the particle distribution func-
tion f at each node, the present model consumes less computer memory than traditional
models. Although we treat as three times particles (k= 1, 2, 3) as traditional LB models,
the computation time is almost the same as that of traditional LB models. The reason is
that the calculation of the equilibrium distribution is turned to be the calculation ofdνk

which is independent ofj (see Eq. (40)). The simulations were carried out on Pentium II
266 PC. One time step needs 3.4 seconds on 360× 140 hexagonal lattice, i.e., about 6.7×
10−5 seconds per node. The total time is proportional to the total number of nodes.

FIG. 3. Pressure distribution for Mach 3 forward-facing step test on lattice 360× 140.
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FIG. 4. Entropy distribution for Mach 3 forward-facing step test on lattice 360× 140.

FIG. 5. Initial condition for Mach 10 reflection shock problem.

FIG. 6. Density distribution for Mach 10 reflection shock on lattice 360× 140.

FIG. 7. Pressure distribution for Mach 10 reflection shock on lattice 360× 140.

FIG. 8. Entropy distribution for Mach 10 reflection shock on lattice 360× 140.



FIG. 9. Density distribution for Mach 5.09 diffraction shock test.

FIG. 10. Pressure distribution for Mach 5.09 diffraction shock test.

FIG. 11. Entropy distribution for Mach 5.09 diffraction shock test.
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IV. CONCLUSION

We present an adaptive LB model to simulate compressible flow and in particular the
propagation of strong shock waves. The particle-velocity set is so large that the mean flow
may have a high velocity. The support set of the equilibrium-distribution function is quite
small and varies with the mean velocity and internal energy. Therefore, the model not
only can handle flows over a wide range of Mach numbers and capture shock jumps, but
also is simple and applicable. The BGK Boltzmann equation is the basic equation. The
Navier–Stokes equations are derived by the Chapman–Enskog method. We have performed
the forward-facing step test, the double Mach reflection test, and a strong shock of Mach
number 5.09 diffracting around a corner. The shocks are well captured and agree with the
results of the other computational methods. These simulations show that the present LB
model is effective for flows with strong shocks. It is as efficient as standard LB models and
consumes less computer memory. The total computation time is proportional to the total
number of nodes. The scheme can be easily adapted to parallel computers. In the numerical
simulations we have taken the advantage of the conditionτ = 1; otherwise, the simulations
would need enormous computer memory and time.
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