Journal of Computational Physié$1,70-84 (2000)

®
doi:10.1006/jcph.2000.6487, available online at http://www.idealibrary.col DE &l.

Simulations of Compressible Flows with Strong
Shocks by an Adaptive Lattice Boltzmann Model

Chenghai Sun

Department of Engineering Mechanics, State Key Laboratory of Tribology, Tsinghua University,
Beijing, 100084, People’s Republic of China
E-mail: sunch@mail.tsinghua.edu.cn

Received September 30, 1998; revised February 21, 2000

An adaptive lattice Boltzmann model for compressible flows is presented. The
particle-velocity set is so large that the mean flow may have a high velocity. The
support set of the equilibrium-distribution function is quite small and varies with
the mean velocity and internal energy. The adaptive nature of this support set permits
the mean flows to have high Mach number, meanwhile, it makes the model simple
and practicable. The model is suitable for perfect gases with an arbitrary specific heat
ratio. Navier—Stokes equations are derived by the Chapman—Enskog method from
the BGK Boltzmann equation. When the viscous terms and the diffusion terms are
considered as a discretion error this system becomes an inviscid Euler system. Several
simulations of flows with strong shocks, including the forward-facing step test, double
Mach reflection test, and a strong shock of Mach number 5.09 diffracting around a
corner, were carried out on hexagonal lattices, showing the model’s capability of
simulating the propagation of strong shock waves; 2000 Academic Press

Key Wordsiattice Boltzmann; Euler equation; N-S equation; adaptive velocities;
perfect gas.

I. INTRODUCTION

In the past years, the lattice Boltzmann (LB) method has attracted much attent
as a novel alternative to traditional methods for numerically solving the Navier—Stok
(N-S) equation. The LB method has demonstrated its ability to simulate single comj
nent hydrodynamics, multiphase and multi-component fluids, magneto-hydrodynam
reaction-diffusion systems, flows through porous media, and other complex systems |
a review paper [1]). Meanwhile, the LB method has demonstrated a significant pot
tial and broad applicability with numerous computational advantages, such as the par:
of algorithm, the simplicity of programming, and the ability to incorporate microscopi
interactions. Although promising, the current lattice Boltzmann method still has a fe
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undesirable shortcomings that limit its general application as a practical computatic
fluid dynamics tool. One of these shortcomings, which is specifically addressed in t
paper, is the low Mach number constraint.

Historically, the LB method originated from a Boolean model knownlatce gas
automata (LGA) [2, 3]. The standard LGA models impose, for the sake of computatior
efficiency, a Boolean constraint which restricts the number of particles with a given vel
ity at a site to be zero or one. The local equilibrium of the mean population of particles
described by the Fermi—Dirac statistics. As a result, LGA models suffer from the statisti
noise and the non-Galilean invariance. These difficulties have led to the developmen
LB models [4—6]. In LB method real numbers represent the local ensemble-averaged p
cle distribution functions. The simple Bhatnagar—-Gross—Krook (BGK) collision operator
applied [4, 5]. Space and time are discrete as they are in the LGA method. The particle
locities belong to a finite set. Consequently the macroscopic velocity is limited. As ares
the general LB method suffers from the constraint of small Mach number. The gas-kine
theory [7, 8] and the discrete-velocity model [9] successfully simulated the compressi
Euler equation. The finite volume method was employed to solve the Boltzmann equatic
The discontinuities were well captured. However, due to the restraint mentioned abc
the standard LB method has great difficulty to simulate compressible Euler flows at h
Mach number. Many efforts have been made to overcome this difficulty in the past ye:
Alexanderet al.[10] attempted to decrease the sound speed to augment the Mach num
Hu et al.[11] proposed a compressible LB model for Euler system and simulated the S
shock-tube problem. Recently, we proposed a locally adaptive LB model [12]. The parti
velocity setis chosen so large that the fluid velocity is no longer limited by it. Consequen
the model is suitable for a wide range of Mach number. We have successfully simula
the Sod shock-tube problem and two-dimensional shock reflection. This model has k
extended to a thermal adaptive LB model [13, 14].

In the present paper, we formulate a generalized adaptive LB model in which both
particle velocity phase and the particle energy phase are continuous spaces. Then we
late several standard flow problems to demonstrate the capability of this model for captu
strong shock waves. This paper is organized as follow. The first part of Section Il descri
the generalized adaptive LB model and derives the general macroscopic conservation €
tions from the Boltzmann equations by the Chapman—Enskog method. In the second
an equilibrium distribution function is determined such that the general macroscopic ¢
servation equations become the N-S equations. The third part discusses the stability c
model. Section Il is about the numerical results. Finally, some concluding remarks will
presented.

Il. SEMI-DISCRETE ADAPTIVE LB MODEL

A. Basic equations. Letr be the particle “migrating velocity,” transporting a particle
from a node to its neighbor node at a distangé during the discrete timat. Let Sbe a
set of migrating velocitiesS= {r}. Because the nodes of the lattice are discrete this set
discrete. Suppose that the particle transports the masomentunmé, and energyn¢ to
the neighbor node at a distancat, whereg and¢ are called particle “phase velocity” and
“phase energy,” anth is the particle masg. € Dy, D; is a bounded domain i (or in 92
for 2-D models) and € Dy; ¢ € Do, Dy is a bounded domain it. DefineD =D; x Dy. In
other words, the migrating velocityis used to calculate the distance that the particle move
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the phase velocitg and phase energy are used to calculate the momentum and energ
transported by the particle. Unlike the migrating velocityhich is discrete¢ and¢ can
vary continuously. Therefore we call this model a “semi-discrete model.” In the stande
LB model, space, time, and the particle velocity are all discrete; as a ré¢suitj¢ must

be discrete and take the values aa‘nd%rz, respectively. The objective of introducing such
a semi-discrete velocity LB model is to increase accuracy of the model [12].

Let x be an arbitrary node of a latticé(x, r, &, ¢, t) is the density distribution function
for the particle with the phase velociy and migrating velocityr, moving tox +rAt
during At, and transporting the momentumng and energyn¢. The conserved total mass,
momentum, and energy are defined as

p=3 [ mirécndec &)
reS

vaZ/Dmgf(x,r,s, c,t)déde 2)
reS

pE=Y [ mefoor g cndede, ®)
resS

whered¢ = dé&; d&, dés.

It is pointed out that the vectors Bneed not to be different one from each other; they
are, however, considered as different elements and the sum is taken over all the elemel
S. Define

n = [m, m¢, me]" (4)
Y = [p. pv. pE]". (5)

The formulae (1), (2), (3) can be written in the compact form,

Y= [ntocrgcnded ©)

res

In LB models, the distribution functiorf (x,r, &, ¢,t) satisfies the BGK Boltzmann
equation,

fXFTrAL T E ot A — FX 1, &0, =QXT1,&¢,t)
(7)
res £ €Dy, ¢ € Dy,

where
1
Q(Xv rv Ev é‘»t) = _;[f(xv r’ g’ Cv t) - feq(x’ r’ 5’ é‘v t)] (8)

and fe(x, r, &, ¢, t) is the equilibrium distribution depending on the total mass, momer
tum, and energy. The discrete migrating velocity {gétis large; moreover and¢ can
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vary continuously. Therefore, the Boltzmann Eg. (7), in general, is hard to solve. In fa
Eq. (7) is only used for theoretical analysis. The technique for numerical simulation will
discussed in Section 111

In the following, we utilize the Chapman—Enskog expansion of the solution of Eq. (7)
derive the macroscopic conservation equations [16—18]. We choiose: T, whereT is a
reference time scale anda typical small parameter. We are then looking for a solution o
Eqg. (7) as an asymptotic expansion of the form

f=) ef® )
n=0
)G

= > e"F, (10)
n=0

wheref ™ andF™ depend only o and its successive gradienfs? = f ®dis completely
determined by the macroscopic variablesv, andp E and satisfies

Y = Z/aneq(x, r, €, ¢, t)dede. (11)

reS

Considering the relations (6), (11), (9), and (8) we have

Z/nf@dgd;:o, vn>1 (12)
reS D
Z/ nQdeds = 0. (13)
res’D

7 is called “collision invariant.”
We Taylor expand the left-hand side of Eq. (7). Then, by identifying the first-order terr
of €, we can determiné ', and considering (12) and (13), we obt&t? andF®,

fO =TIV r 4 I ko
Y

FO = —din/ r {9 d¢ d¢
D

reS

T afed
O _ _gi (6N iv/( fed .EO
FY = d|vE /D{f r+2[d|v(f ) + oy F r“ndgd;.

reS

The operator div an¥ take effect on variable. The variables, £, and; are independent
of x. Therefore, they can be treated as constant for diviandp to order 1, Eq. (10) is
written as

o eq
= dle/Df rmdéde

reS

1 afed
—€T | = — 7 )div|div /feqrrdd+ /—-F(O)rdd . (14
(5-r)avav s [ 1ownacas + 3 [ 56 Fomacac]. a9

reS
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FIG. 1. lllustration of particle migrating velocities (fakt = 1).

This is the macroscopic conservation equation. It depends on the distributfGf. déffthe
equilibrium distribution is properly determined it may become the N-S equations.

B. Equilibrium distributions. Letl be the unitlength of a uniform lattice. Let’s consider
a vector sefcj,; j=1,...,b,} connecting a node to its equal distance neighbor node
whereb, is the number of vector directions, the module ot;,, is an integer times/At.
Suppose the vectorsigt;,; j =1, ..., b,}is symmetric up to order 2;i. QJ * ,C;,=0and
ZJ L1Cj,Cj, = =(c/?/D)l,wherd is second order unittensor abds the d|menS|on of space
[3]. For the hexagonal lattice we chodse=6, v =1 and 2. In the standard LB method,
the constant vectors;, are the particle velocities. We superimpose the fluid velogity
which is approximated byy (k= 1, 2, 3) (see Fig. 1), on the symmetric velocri’gy. Letx
be an arbitrary node; is the fluid velocity at this node/;, vo, andvs are the vectors from
the nodex to the apexes of the triangle containing the velocity veetd@onsider particle
migrating velocitiexj,k € S, phase velocities;, € D,, fluctuating velocities; (k=1, 2,
3), and phase energy, € Dy defined by

Cjvk = Vk +Cj,, (15)

Cj» =V+Cj, (16)

Vk =V + Vv a7
cjv=%6?v+<1>:%(u2+2c,-v-v+c;2)+<1>. (18)

¢jv consists of kinetic energm262 and other form energmn® that was introduced
in order to obtain an arbitrary specific heat ratioFigure 1 shows the particle migrating
velocities for At =1. If At is not equal to 1, all the velocities in this figure should be
multiplied by At. For high speed flow the fluctuating velocitigsare small.

We are now determining the equilibrium distributidif%x, r, &, ¢,t), re S, £ €Dy,
¢ € Do. Suppose that the migrating velocity setontains allcj,x and thatD (=D1 x Dy)
is so large that;, € D; and¢j, € Do for all ¢, and¢;, all the time. We hope the model
is as simple as possible under the condition that the fluid properties can be comple
satisfied. We concentrate the particles &tc;,«, £ =Cj,, and; =¢j,.
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We define the equilibrium distribution as

{duk8(£ —Cj)8(¢ —¢j)  forr =cjuk
0 for otherr € S,

fex,r, &, ¢,t) = (19)

wheres (€) is thes function.s§(€) =0 for £ #£0; [g(£)5(€) d€ =g(0). 8(¢) =0 for¢ #0;
J9(¢) 8(¢)d¢ =g(0). di is a function of macroscopic variables and will be determine:
later.

It is pointed out thatf ®9(x, r, &, ¢, t) is defined for all(r, &, ¢) € S x Dy x Dgy. How-

ever,f®i(x, r, &, ¢, t) isnon-zero only forr, &, ¢) € {Cjuk} x {Cjv} x {¢j,} thatis called the
support set off €9(x, r, &, ¢, t). Define

okt = /D fe9UX, Cjuk, &, ¢, 1) dEdE = duk. (20)
Substitutingf €@ defined by Eq. (19) into Eq. (14), one obtains
ay _ ) 1 _ )
W = —dlvlgj {dukcjvknjv + €T (2 — ‘L’> {le(dUijuijuk"’ljv)
FO. % (i, 21
+ . W( vkcjvknjv) P ( )

where
1 T
nj, = {m, mcj,, mgj,}" = {m, m( +cj,), m[§<v+djv)2+ @}} . (22

In the same way, Eq. (11) becomes

Y=Y [ afrgcndede = 3 du, (23)
res /P k., j
ie.,
3
p = Zmadvk = Zpk (24)
k,v k=1
E = md, 162 ®
pE = k; k E i +
1
= Z émd,k(v2-|-2v-c’jv +¢?) +p®
k,v,j
= }pvz + Z }mh,d kC/2 + p® (25)
2 k,v 2 o 7

wherep, = >, mb,d,. The second component of (23) is automatically satisfied as lor
as thed, satisfy (24).
In order to increase the accuracy we assume thatgtisatisfy the equation

3
pV = Z PkVk. (26)
k=1



76 CHENGHAI SUN

For givenp andpv it can be proved that Egs. (24) and (26) have unique non-negati
solution forpk (see Fig. 1). In fact, when the head of veotas inside of the trianglBC,
ok is positive fork = 1, 2, 3. When it approaches the segmB&, p; tends to 0. When it
moves still further into the triangl8C D, the triangleABC in consideration is replaced
by BC D, andps, that is for pointD now, becomes again positive. In brief, thés change
continuously when the head of vectomoves from a triangle into another one. If the head
of vectorv is on Awe haveo, = p, po = p3=0.

Equations (24) and (26) permit us to write

> v =0. 27)
k

Thanks to Eq. (27), we will see that the first ordenpin the conservation equations will
disappear. We introduce the density portign= px/p and supposd,x has the form

dvk = Olkd,,, (28)
whered, = )", d,« will be determined by the density and pressure (or internal energy).

The perfect gas with specific heat raicatisfiesp= (y — 1) pe, wheree=E — %vz is
the internal energy. The pressuysdas the form

1
p=> mh)dUBC/UZ, (29)

whereD is the space dimension.
In the case where th& have two levelsi{= 1, 2) one can determingy, d, and® by
Egs. (24), (25), and (29),

- D(y —De
YT om(e — o)
D(y — De—c}?

=1 D 1
[ 20 )e

In order to ensure the non-negativity df and d,, ¢, andc, need to satisfyc;? <
D(y — 1)e < ;2. Howeverc; andc, are not completely determined. In practice, we choos:
c; andc;, as close as possible from each other.

Now, the equilibrium distribution is completely determined. When the mean veloci
is zero, we haveo, = p, po = p3=0, therefored,x =0 for k=2 and 3. In a standard
LB model of two particle velocity levels [15], the equilibrium distribution can be writter
as

D D(D +2) c?
eq __ . P v, 2
fjv_d\,{1+czcjv-v+zv c,ucjv.vv—Dv}}.

v
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When the mean velocity is zero, this equation becomes

f29=d,

jv

which is the same as Eqg. (20). This means that the present model agrees with the stat
LB model when the mean velocity is zero.

Considering the relations (15), (16), (17), (26), and (27), we derive the continuity, m
mentum, and energy equations from Eq. (21),

?Tf + div(pv) = div(Bo) (30)

83% + div(pw) 4+ Vp = div{u[VV + (VW) — (y — 1) divvl] + By} (31)

% + div(pv 4+ pEV) = div{uv - [VV + (VV)T — (y — 1) divvl]}

+diviVA+ V(u®) — yeVu + By}, (32)

where

(--2)
(-2)o3

BlzeT(r :—2L>d|v§:mh,dvkvvkvk (33)
(-2)o3

€T is the time stepy is the viscosity. In Eq. (32) the first term and the second term of th
right-hand side correspond respectively to the dissipation and the heat condBgtiBa.
andB; can be regarded as discretion error. Then, Egs. (30), (31), and (32) become Na\
Stokes equations. The influences of the fluctuating veloaifiese included in termBg,

B1, andB, which are of second order gf. Figure 1 shows thav; | <I/At, wherel is the
unit length of the lattice andt is the unit time. From Eqgs. (24), (26), and (28) we know
that when one of the thrge, | takes the maximurty At for examplev;, | =1/At, we have
d,x = 0. Consequenth\By, B;, andB; are still small.

Whenv is small,|v| < %I/At, for example, one ofy is a zero vector (see Fig. 1). Sup-
posingv;, = 0 without losing generality, we hawg = —v. p» andps, solved from Eq. (26),
can be written agy = a, - v, k=2, 3, whereay are constant vectors determinedyand
vz. In this caseBy andB, are of ordew andB; is of ordervv.
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In Ref. [14], By, B1, andB, were removed from Egs. (30), (31), and (32) by modifying
the collision invariant;, while the computation increased aboy81

C. Asymptotic properties.In the discrete kinetic theory of gases [18] and lattice ga:
[3], there exists a local H theorem which ensures the stability or asymptotic stability of t
models [19-21]. In the LB method we do not have the H theorem. However, due to |
simple collision operator of BKG type, we can still analyze the stability of a LB model.

The Boltzmann equation (7) can be written as

fX+rAtr, & ¢, t+ At) = fo(x, r, &, ¢, 1) (34)
fox,r, &, ¢,t) = f(x,r, & ¢,t) + QX r,&¢,1), (35)

where2 defined by Eq. (8) is a function df and f €9, the equilibrium distribution defined
above. The evolution of (x, r, &, ¢, t) with time consists of two steps: local collision (35)
and displacement (34). Considering Eqg. (13), we have

> [ntxrgcndede =Y [nforécnded @)

reS reS

The collision step changes the distribution functibriy the amount proportional to the
departure off from the equilibrium distributiorf @under the condition (36). The tendency
to the equilibrium distribution can be expected. Especially wheril the collision operator
(35) becomed(x,r, &, ¢, t) = fex, 1, €, ¢, t).

We can make arigorous analysis in homogeneous cases. SUpposet, ¢, t) is homo-
geneous at initial time=0, i.e., f (x, 1, &, ¢, 0) is independent af; the lattice is periodic.
From the Boltzmann equation (7J,x, r, &, ¢, t) keeps being homogeneous all the time,
therefore, the macroscopic variables defined by Egs. (1), (2), and (3) are always
mogeneous and constant. Being completely determined by the macroscopic varial
fex,r, € ¢,t) is also always homogeneous and constant, if€%x,r,&,¢,t) =
fex,r, &, ¢, 0). Equation (7) can be written as

1 1
fn+1(r’ E! é‘): ;foeq(rv £7§)+ <l_ ?) fr‘l(rv gvé‘)’ vr e Svéepjné‘ GDO’ (37)

where fo(r, €, 0) = f(x, 1, £, ¢, nAt), f5%r, &, ¢) is the equilibrium distribution corre-
sponding to the macroscopic variables at initial time. One can see that the equilibri
distribution f;%(r, &, ¢) is a fix point of Eq. (37). By recurrence of Eq. (3T 1(r, €, ¢)
can be calculated

1< 1\' . eq 1\
fn+1(r’£’ C) = ;Z (1_;> 1:O (I’,E,{)—i— (1_;) fO(raE’ é‘)

i=0
1 n+1 1 n+1
_ {1_ (_) ] 90 €, 0) + (1— ;> W&o (39)

from which we have

lim foa(r.€.0) = fokr,&,¢0), ift>1/2
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Atinitial time fo(r, &€, ¢) may be different from the equilibrium distributioiaeq(r, £,0)
but f,(r, &, ¢) tends to the equilibrium distribution if >1/2. Therefore, in the homoge-
neous case, the equilibrium distributidfi’(r, £, ¢) is an asymptotically stable fix point if
T>1/2.

Ill. NUMERICAL SIMULATIONS

Because the discrete migrating velocity Sebntains alt;, that vary from node to node
and from time to timeSis quite large. Moreoveg € D; and¢ € Dy can vary continuously;
therefore the Boltzmann equation (7) defined forallS, € € D;, and¢ € Dy is generally
hard to solve. Fortunately, when=1 it is simplified

f(x+rAat,r, & ¢, t+ At) = £%9x,r, €, ¢, 1). (39)

Since f&(x,r, &, ¢, t) depends only on fluid density, velocity, and internal energy, th
particle distributionf att + At is also determined by them, independent of the patrticle di:
tribution f at timet. In fact, during the numerical simulations, what we care about are tt
mass, momentum, and energy transported by the particles, and there is no need to sto
particle distributionf. In this way, the need of computer memory and computation tim
is considerably reduced. Due to the fact tH&f(x, r, &, ¢, t) =0 for r #cj,k, the mass,
momentum, and energy transported by a particle fxdmx 4 c;,k At are the components
of the vector

[ e € 6 0 de e = duc (40)
D

In the simulations we need only to calculaﬁ’gduk.

If we regard the viscous terms and diffusion terms of the right-hand sides of Egs. (:
and (32) as the discretion error, Egs. (30), (31), and (32) become inviscid Euler systen
fact, the viscosity and diffusivity are of ordér — %)IZ/At, wherel is the unit length of
the lattice andAt, is the unit time.

Although the theory in the previous section is validfor 1/2, T has to be 1 for practical
simulation in this modelr appears only in the viscous terms and diffusion terms. Indee
when solving N-S equations by this model, we lose the freedom of choosing the visco:
and diffusivity by, yet we can choose them by other parameters [14]. When we solve Eu
equations, the viscous terms and diffusion terms are considered as the discretion err
this case, the condition= 1 does not provoke inconveniences.

In Ref. [12] we simulated the Sod shock-tube problem and two-dimensional shock refl
tion. The numerical results agree well with the exact solutions. In the following, we simul
three more complex flows with strong shocks under the conditierl andy = 1.4: the
forward-facing step, double Mach reflection, and Mach 5.09 diffraction shock tests.

ExampPLE 1. The forward-facing steptestis carried out on a 3610 hexagonal lattice.
The computational domain is 3: 1. Because of the high speed of the flow, in order to en:
that the constant condition is properly set on the left boundary of the computational dom:
at the left of the entrance we add several additional rows of nodes upstream. The con:
condition(p, p, u, v) =(1.0,0.25/1.4, 1.5, 0.) is imposed on theses additional nodes. The
corresponding Mach number is 3.0. The mirror reflection boundary condition (i.e., slip w
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FIG. 2. Density distribution for Mach 3 forward-facing step test on lattice 36310.

condition) is imposed on the solid walls. The numerical results are presented in Figs. :
for density, pressure, and entropy contourts=atL000th iteration. The shapes and positions
of the shocks agree with the those of Refs. [8, 23].

ExaMPLE 2. The next numerical example is a double Mach reflection of a strong sho
test [22] calculated on 369 140 hexagonal lattice. The computational domainis 3:1. Th
problem is set up by driving a shock down a tube which contains a wedge as showt
Fig. 5. The fluid in front of the shock has zero velocity, and the shock Mach number is eq
to 10. The solution to this problem is self-similar, with a functionf y, t) only in the
combination(x/t, y/t). The density, pressure, and entropy contouts=a200th iteration
are shown in Figs. 6—-8. Complex features, such as oblique shocks and triple points, are
captured, in good agreement with results obtained by upwind method [22].

ExamMpPLE 3. The last numerical example is a strong shock of Mach number 5.(
diffracting around a corner. The computation domain:is1, divided into 140x 160 cells.
Figures 9-11 show the density, pressure, and entropy contos1at0th iteration. Here
again, the shapes and positions of the shocks agree with those of Xu [8]. However,
shocks are not as fine as Xu's. The reason is that our solution is the solution of N
equations (30), (31), and (32).

Since we store only the mass, momentum, and energy, not the particle distribution fu
tion f at each node, the present model consumes less computer memory than traditi
models. Although we treat as three times particles (, 2, 3) as traditional LB models,
the computation time is almost the same as that of traditional LB models. The reaso
that the calculation of the equilibrium distribution is turned to be the calculatioh,of
which is independent of (see Eq. (40)). The simulations were carried out on Pentium |
266 PC. One time step needs 3.4 seconds orx3B80 hexagonal lattice, i.e., abou6«
10-° seconds per node. The total time is proportional to the total number of nodes.

y
o o o
N o o -

o
[\ ]
c||i|||||||||||||

o

FIG. 3. Pressure distribution for Mach 3 forward-facing step test on lattice3640.
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FIG. 4. Entropy distribution for Mach 3 forward-facing step test on lattice 36310.
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FIG. 5. Initial condition for Mach 10 reflection shock problem.
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FIG. 6. Density distribution for Mach 10 reflection shock on lattice 36040.

1
0.8
06

>
04

02

HHIIHI'IIIIIIIIIII[II

B LI I T I SR SR BT [ |
0 0.5 1 1.5 2 25 3
X

FIG. 7. Pressure distribution for Mach 10 reflection shock on lattice-36@0.
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FIG. 8. Entropy distribution for Mach 10 reflection shock on lattice 36040.
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FIG. 9. Density distribution for Mach 5.09 diffraction shock test.

FIG. 10. Pressure distribution for Mach 5.09 diffraction shock test.

FIG. 11. Entropy distribution for Mach 5.09 diffraction shock test.
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IV. CONCLUSION

We present an adaptive LB model to simulate compressible flow and in particular
propagation of strong shock waves. The particle-velocity set is so large that the mean |
may have a high velocity. The support set of the equilibrium-distribution function is qui
small and varies with the mean velocity and internal energy. Therefore, the model
only can handle flows over a wide range of Mach numbers and capture shock jumps,
also is simple and applicable. The BGK Boltzmann equation is the basic equation.
Navier—Stokes equations are derived by the Chapman—Enskog method. We have perfo
the forward-facing step test, the double Mach reflection test, and a strong shock of M
number 5.09 diffracting around a corner. The shocks are well captured and agree with
results of the other computational methods. These simulations show that the presen
model is effective for flows with strong shocks. It is as efficient as standard LB models ¢
consumes less computer memory. The total computation time is proportional to the t
number of nodes. The scheme can be easily adapted to parallel computers. In the num¢
simulations we have taken the advantage of the conditieri; otherwise, the simulations
would need enormous computer memory and time.
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